[image: ]



Data Engineering Guide

Delta Live Tables CDC Implementation Guide




Version: 1.0
Date: January 2026
Author: Mastech Digital - Data Engineering Practice


Document Information
	Field
	Value

	Version
	1.0

	Last Updated
	2025-01-29

	Classification
	Internal Use

	Owner
	Data Engineering Team

	Department
	Mastech Digital - Data & Analytics



Table of Contents
[Executive Summary](#1-executive-summary)
[CDC Fundamentals](#2-cdc-fundamentals)
[DLT APPLY CHANGES API](#3-dlt-apply-changes-api)
[Debezium Integration](#4-debezium-integration)
[AWS DMS Integration](#5-aws-dms-integration)
[Oracle GoldenGate Integration](#6-oracle-goldengate-integration)
[Kafka CDC Patterns](#7-kafka-cdc-patterns)
[SCD Implementation](#8-scd-implementation)
[CDC Monitoring](#9-cdc-monitoring)
[Error Handling](#10-error-handling)
[Performance Optimization](#11-performance-optimization)
[Best Practices](#12-best-practices)
1. Executive Summary
1.1 Purpose and Scope
Change Data Capture (CDC) is essential for maintaining synchronized, up-to-date data in the Lakehouse. This guide provides comprehensive patterns for implementing CDC pipelines using Delta Live Tables, covering integration with major CDC tools including Debezium, AWS DMS, and Oracle GoldenGate.
1.2 What is Change Data Capture?
CDC is a design pattern that identifies and captures changes made to data in a source system, making those changes available for downstream processing. Instead of periodically copying entire datasets, CDC captures only the changes (inserts, updates, deletes), enabling:
Near Real-time Sync: Changes propagate within seconds or minutes
Reduced Load: Only changes are transferred, not full datasets
Audit Trail: Complete history of all changes
Event-Driven Architecture: Changes can trigger downstream processes
1.3 CDC Architecture Overview
┌─────────────────────────────────────────────────────────────────────────────┐
│                         CDC ARCHITECTURE                                     │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                              │
│   SOURCE SYSTEMS                                                            │
│   ┌──────────┐  ┌──────────┐  ┌──────────┐  ┌──────────┐                  │
│   │ PostgreSQL│  │  MySQL   │  │  Oracle  │  │SQL Server│                  │
│   └────┬─────┘  └────┬─────┘  └────┬─────┘  └────┬─────┘                  │
│        │             │             │             │                          │
│        ▼             ▼             ▼             ▼                          │
│   CDC CAPTURE LAYER                                                         │
│   ┌─────────────────────────────────────────────────────────────────────┐  │
│   │  Debezium  │  AWS DMS  │  GoldenGate  │  Native CDC                 │  │
│   └─────────────────────────────────────────────────────────────────────┘  │
│        │                                                                    │
│        ▼                                                                    │
│   MESSAGE LAYER                                                             │
│   ┌─────────────────────────────────────────────────────────────────────┐  │
│   │         Kafka / Kinesis / Event Hubs / Cloud Storage                │  │
│   └─────────────────────────────────────────────────────────────────────┘  │
│        │                                                                    │
│        ▼                                                                    │
│   DLT PROCESSING                                                            │
│   ┌─────────────────────────────────────────────────────────────────────┐  │
│   │  Bronze (Raw CDC)  →  APPLY CHANGES  →  Silver (Current State)      │  │
│   └─────────────────────────────────────────────────────────────────────┘  │
│                                                                              │
└─────────────────────────────────────────────────────────────────────────────┘
1.4 CDC Tool Comparison
	Tool
	Supported Sources
	Delivery
	Latency
	Complexity

	**Debezium**
	PostgreSQL, MySQL, MongoDB, SQL Server, Oracle
	Kafka
	Seconds
	Medium

	**AWS DMS**
	20+ databases
	S3, Kinesis
	Minutes
	Low

	**GoldenGate**
	Oracle, SQL Server, MySQL
	Files, Kafka
	Seconds
	High

	**SQL Server CDC**
	SQL Server
	Tables
	Minutes
	Low

	**PostgreSQL Logical Rep**
	PostgreSQL
	Streaming
	Seconds
	Medium



2. CDC Fundamentals
2.1 CDC Event Types
CDC systems capture different types of data changes:
	Event Type
	Description
	DLT Handling

	**INSERT**
	New record created
	Insert into target

	**UPDATE**
	Existing record modified
	Update target record

	**DELETE**
	Record removed
	Delete from target or mark deleted

	**TRUNCATE**
	All records removed
	Truncate target table

	**SCHEMA CHANGE**
	Table structure modified
	Handle via schema evolution



2.2 CDC Message Formats
Understanding the message format is crucial for proper parsing:
Debezium Format:
{
  "before": { "id": 1, "name": "Old Name", "email": "old@email.com" },
  "after": { "id": 1, "name": "New Name", "email": "new@email.com" },
  "source": {
    "version": "2.0.0",
    "connector": "postgresql",
    "name": "dbserver1",
    "ts_ms": 1704067200000,
    "db": "inventory",
    "table": "customers"
  },
  "op": "u",
  "ts_ms": 1704067200123
}
AWS DMS Format:
{
  "data": { "id": 1, "name": "New Name", "email": "new@email.com" },
  "metadata": {
    "timestamp": "2025-01-01T12:00:00Z",
    "record-type": "data",
    "operation": "update",
    "partition-key-type": "schema-table",
    "schema-name": "public",
    "table-name": "customers"
  }
}
2.3 Ordering and Consistency
CDC events must be processed in the correct order to maintain data consistency:
Ordering Challenges:
Events may arrive out of order due to network latency
Partitioned streams may have different processing rates
Retry mechanisms can cause duplicate events
DLT Solution:
The sequence_by parameter in APPLY CHANGES ensures correct ordering:
dlt.apply_changes(
    target="silver_customers",
    source="bronze_customers_cdc",
    keys=["customer_id"],
    sequence_by=F.col("_commit_timestamp"),  # Ensures correct order
    ...
)
3. DLT APPLY CHANGES API
3.1 API Overview
The APPLY CHANGES API is DLT's mechanism for processing CDC events. It handles the complexity of:
Ordering events correctly
Handling late-arriving data
Managing deletes and updates
Maintaining SCD Type 1 or Type 2 history
3.2 Basic APPLY CHANGES Pattern
import dlt
from pyspark.sql import functions as F

# Step 1: Ingest raw CDC events into Bronze
@dlt.table(name="bronze_customers_cdc")
def bronze_customers_cdc():
    """
    Ingest raw CDC events from landing zone.

    The Bronze table preserves:
    - Complete CDC event payload
    - Operation type (INSERT, UPDATE, DELETE)
    - Source timestamps for ordering
    - Metadata for debugging
    """
    return (
        spark.readStream
        .format("cloudFiles")
        .option("cloudFiles.format", "json")
        .option("cloudFiles.schemaLocation", "/checkpoints/customers_cdc/schema")
        .load("/mnt/landing/cdc/customers/")
        .withColumn("_ingestion_time", F.current_timestamp())
    )


# Step 2: Create target streaming table
dlt.create_streaming_table(
    name="silver_customers",
    comment="Customer master data with CDC applied"
)


# Step 3: Apply CDC changes
dlt.apply_changes(
    target="silver_customers",
    source="bronze_customers_cdc",
    keys=["customer_id"],                              # Primary key(s)
    sequence_by=F.col("_commit_timestamp"),            # Ordering column
    apply_as_deletes=F.expr("operation = 'DELETE'"),   # Delete condition
    apply_as_truncates=F.expr("operation = 'TRUNCATE'"), # Truncate condition
    except_column_list=["operation", "_commit_timestamp", "_ingestion_time"],
    stored_as_scd_type=1                               # SCD Type 1 (overwrite)
)
3.3 APPLY CHANGES Parameters
	Parameter
	Required
	Description

	`target`
	Yes
	Target table name

	`source`
	Yes
	Source table/view with CDC events

	`keys`
	Yes
	Primary key column(s) for matching

	`sequence_by`
	Yes
	Column for ordering events

	`apply_as_deletes`
	No
	Condition identifying delete events

	`apply_as_truncates`
	No
	Condition identifying truncate events

	`except_column_list`
	No
	Columns to exclude from target

	`stored_as_scd_type`
	No
	1 (overwrite) or 2 (history)

	`track_history_column_list`
	No
	Columns to track for SCD2

	`track_history_except_column_list`
	No
	Columns to ignore for SCD2



3.4 Column Selection Strategies
# Strategy 1: Exclude specific columns
dlt.apply_changes(
    target="silver_customers",
    source="bronze_customers_cdc",
    keys=["customer_id"],
    sequence_by=F.col("_commit_timestamp"),
    except_column_list=[
        "operation",           # CDC metadata
        "_commit_timestamp",   # Ordering field
        "_ingestion_time",     # Ingestion metadata
        "_source_file"         # Source tracking
    ],
    stored_as_scd_type=1
)


# Strategy 2: Track specific columns for SCD2
dlt.apply_changes(
    target="silver_customers_history",
    source="bronze_customers_cdc",
    keys=["customer_id"],
    sequence_by=F.col("_commit_timestamp"),
    stored_as_scd_type=2,
    track_history_column_list=[
        "name",
        "email",
        "address",
        "phone",
        "status"
    ]
    # Only changes to these columns create new versions
)


# Strategy 3: Ignore certain columns for SCD2
dlt.apply_changes(
    target="silver_customers_history",
    source="bronze_customers_cdc",
    keys=["customer_id"],
    sequence_by=F.col("_commit_timestamp"),
    stored_as_scd_type=2,
    track_history_except_column_list=[
        "last_login",      # Don't create new version for login changes
        "updated_at"       # Technical field, not business-relevant
    ]
)
4. Debezium Integration
4.1 Debezium Overview
Debezium is an open-source CDC platform that captures changes from databases by reading their transaction logs. It provides:
Log-based CDC: Minimal impact on source databases
Exactly-once delivery: With Kafka Connect
Schema tracking: Captures DDL changes
Multiple connectors: PostgreSQL, MySQL, MongoDB, SQL Server, Oracle
4.2 Debezium Message Parsing
import dlt
from pyspark.sql import functions as F
from pyspark.sql.types import *

# Define Debezium schema
DEBEZIUM_SCHEMA = StructType([
    StructField("before", StructType([
        StructField("id", LongType()),
        StructField("name", StringType()),
        StructField("email", StringType()),
        StructField("status", StringType())
    ])),
    StructField("after", StructType([
        StructField("id", LongType()),
        StructField("name", StringType()),
        StructField("email", StringType()),
        StructField("status", StringType())
    ])),
    StructField("source", StructType([
        StructField("ts_ms", LongType()),
        StructField("db", StringType()),
        StructField("table", StringType())
    ])),
    StructField("op", StringType()),
    StructField("ts_ms", LongType())
])


@dlt.table(name="bronze_debezium_raw")
def bronze_debezium_raw():
    """
    Ingest raw Debezium events from Kafka.
    """
    return (
        spark.readStream
        .format("kafka")
        .option("kafka.bootstrap.servers", "kafka:9092")
        .option("subscribe", "dbserver1.inventory.customers")
        .option("startingOffsets", "earliest")
        .load()
        .select(
            F.col("key").cast("string").alias("message_key"),
            F.from_json(F.col("value").cast("string"), DEBEZIUM_SCHEMA).alias("payload"),
            F.col("timestamp").alias("kafka_timestamp"),
            F.col("partition"),
            F.col("offset")
        )
    )


@dlt.table(name="bronze_customers_cdc")
def bronze_customers_cdc():
    """
    Parse Debezium events into a format suitable for APPLY CHANGES.

    Debezium operation codes:
    - 'c': CREATE (insert)
    - 'u': UPDATE
    - 'd': DELETE
    - 'r': READ (snapshot)
    """
    return (
        dlt.read_stream("bronze_debezium_raw")
        .select(
            # Extract customer data (use 'after' for inserts/updates, 'before' for deletes)
            F.coalesce(
                F.col("payload.after.id"),
                F.col("payload.before.id")
            ).alias("customer_id"),
            F.coalesce(
                F.col("payload.after.name"),
                F.col("payload.before.name")
            ).alias("name"),
            F.coalesce(
                F.col("payload.after.email"),
                F.col("payload.before.email")
            ).alias("email"),
            F.coalesce(
                F.col("payload.after.status"),
                F.col("payload.before.status")
            ).alias("status"),

            # Map Debezium operation to standard format
            F.when(F.col("payload.op") == "d", "DELETE")
             .when(F.col("payload.op").isin("c", "r"), "INSERT")
             .when(F.col("payload.op") == "u", "UPDATE")
             .alias("operation"),

            # Use source timestamp for ordering (transaction time)
            F.from_unixtime(F.col("payload.source.ts_ms") / 1000).cast("timestamp").alias("_commit_timestamp"),

            # Metadata for debugging
            F.col("payload.source.db").alias("_source_db"),
            F.col("payload.source.table").alias("_source_table"),
            F.col("kafka_timestamp").alias("_kafka_timestamp")
        )
    )


# Create target table
dlt.create_streaming_table(
    name="silver_customers",
    comment="Customer master from Debezium CDC"
)

# Apply changes
dlt.apply_changes(
    target="silver_customers",
    source="bronze_customers_cdc",
    keys=["customer_id"],
    sequence_by=F.col("_commit_timestamp"),
    apply_as_deletes=F.expr("operation = 'DELETE'"),
    except_column_list=["operation", "_commit_timestamp", "_source_db", "_source_table", "_kafka_timestamp"],
    stored_as_scd_type=1
)
4.3 Handling Debezium Schema Changes
@dlt.table(name="bronze_customers_cdc_flexible")
def bronze_customers_cdc_flexible():
    """
    Handle Debezium events with schema evolution.

    Uses permissive parsing to handle schema changes gracefully.
    """
    return (
        spark.readStream
        .format("kafka")
        .option("kafka.bootstrap.servers", "kafka:9092")
        .option("subscribe", "dbserver1.inventory.customers")
        .load()
        .select(
            F.col("key").cast("string").alias("message_key"),
            F.col("value").cast("string").alias("raw_payload"),
            F.col("timestamp").alias("kafka_timestamp")
        )
        # Parse with schema inference (slower but handles changes)
        .withColumn("payload", F.from_json(F.col("raw_payload"), "MAP<STRING, STRING>"))
        # Extract operation
        .withColumn("operation",
            F.when(F.col("payload.op") == "d", "DELETE")
             .otherwise("UPSERT")
        )
        # Store raw for flexible downstream parsing
        .withColumn("_ingestion_timestamp", F.current_timestamp())
    )
5. AWS DMS Integration
5.1 AWS DMS Overview
AWS Database Migration Service (DMS) captures changes from source databases and delivers them to various targets including S3, Kinesis, and Kafka. Key features:
Managed Service: No infrastructure to maintain
Wide Source Support: 20+ database engines
Full Load + CDC: Initial load with ongoing replication
Transformation: Basic transformations during migration
5.2 DMS to S3 Pattern
import dlt
from pyspark.sql import functions as F

@dlt.table(name="bronze_dms_customers")
def bronze_dms_customers():
    """
    Ingest CDC files from AWS DMS to S3.

    DMS writes:
    - Full load files: LOAD00000001.parquet
    - CDC files: 20250101-120000.parquet

    File contains 'Op' column:
    - 'I': Insert
    - 'U': Update
    - 'D': Delete
    """
    return (
        spark.readStream
        .format("cloudFiles")
        .option("cloudFiles.format", "parquet")
        .option("cloudFiles.schemaLocation", "/checkpoints/dms_customers/schema")
        # Process in order
        .option("cloudFiles.maxFilesPerTrigger", "100")
        .load("s3://dms-bucket/cdc/public/customers/")
        .withColumn("_source_file", F.input_file_name())
        .withColumn("_ingestion_timestamp", F.current_timestamp())
    )


@dlt.table(name="bronze_customers_cdc")
def bronze_customers_cdc():
    """
    Transform DMS format to standard CDC format.
    """
    return (
        dlt.read_stream("bronze_dms_customers")
        .select(
            F.col("id").alias("customer_id"),
            F.col("name"),
            F.col("email"),
            F.col("status"),

            # Map DMS operation codes
            F.when(F.col("Op") == "D", "DELETE")
             .when(F.col("Op") == "I", "INSERT")
             .when(F.col("Op") == "U", "UPDATE")
             .otherwise("UPSERT")
             .alias("operation"),

            # DMS provides timestamp in the file path and/or metadata
            F.coalesce(
                F.col("_dms_timestamp"),
                F.col("_ingestion_timestamp")
            ).alias("_commit_timestamp"),

            F.col("_source_file")
        )
    )


# Create and apply changes
dlt.create_streaming_table(name="silver_customers")

dlt.apply_changes(
    target="silver_customers",
    source="bronze_customers_cdc",
    keys=["customer_id"],
    sequence_by=F.col("_commit_timestamp"),
    apply_as_deletes=F.expr("operation = 'DELETE'"),
    except_column_list=["operation", "_commit_timestamp", "_source_file"],
    stored_as_scd_type=1
)
5.3 DMS to Kinesis Pattern
@dlt.table(name="bronze_kinesis_cdc")
def bronze_kinesis_cdc():
    """
    Ingest CDC events from AWS Kinesis (DMS target).
    """
    return (
        spark.readStream
        .format("kinesis")
        .option("streamName", "dms-cdc-stream")
        .option("region", "us-east-1")
        .option("initialPosition", "TRIM_HORIZON")
        .load()
        .select(
            F.from_json(
                F.col("data").cast("string"),
                DMS_SCHEMA
            ).alias("payload"),
            F.col("approximateArrivalTimestamp").alias("kinesis_timestamp")
        )
        .select(
            F.col("payload.data.*"),
            F.col("payload.metadata.operation").alias("operation"),
            F.col("payload.metadata.timestamp").cast("timestamp").alias("_commit_timestamp")
        )
    )
6. Oracle GoldenGate Integration
6.1 GoldenGate Overview
Oracle GoldenGate is an enterprise-grade CDC solution optimized for Oracle databases but supporting other sources. It provides:
High Performance: Optimized for Oracle
Flexibility: Multiple delivery formats
Conflict Resolution: Built-in conflict handling
Bidirectional Replication: Active-active configurations
6.2 GoldenGate Trail File Pattern
import dlt
from pyspark.sql import functions as F

@dlt.table(name="bronze_goldengate_raw")
def bronze_goldengate_raw():
    """
    Ingest GoldenGate trail files.

    GoldenGate can output to:
    - Trail files (binary, requires extract)
    - JSON files
    - Kafka topics
    """
    return (
        spark.readStream
        .format("cloudFiles")
        .option("cloudFiles.format", "json")
        .option("cloudFiles.schemaLocation", "/checkpoints/gg_raw/schema")
        .load("/mnt/goldengate/trails/")
    )


@dlt.table(name="bronze_customers_gg_cdc")
def bronze_customers_gg_cdc():
    """
    Parse GoldenGate JSON format.

    GoldenGate operation types:
    - 'I': Insert
    - 'U': Update (before and after images)
    - 'D': Delete
    - 'T': Truncate
    """
    return (
        dlt.read_stream("bronze_goldengate_raw")
        .filter(F.col("table") == "CUSTOMERS")
        .select(
            F.col("after.CUSTOMER_ID").alias("customer_id"),
            F.col("after.NAME").alias("name"),
            F.col("after.EMAIL").alias("email"),

            # Map GoldenGate operation
            F.when(F.col("op_type") == "D", "DELETE")
             .when(F.col("op_type") == "T", "TRUNCATE")
             .when(F.col("op_type") == "I", "INSERT")
             .otherwise("UPDATE")
             .alias("operation"),

            # GoldenGate commit timestamp
            F.to_timestamp(F.col("op_ts")).alias("_commit_timestamp"),

            # Transaction ID for ordering within same timestamp
            F.col("pos").alias("_position")
        )
    )


dlt.create_streaming_table(name="silver_customers")

dlt.apply_changes(
    target="silver_customers",
    source="bronze_customers_gg_cdc",
    keys=["customer_id"],
    sequence_by=F.struct(F.col("_commit_timestamp"), F.col("_position")),
    apply_as_deletes=F.expr("operation = 'DELETE'"),
    apply_as_truncates=F.expr("operation = 'TRUNCATE'"),
    except_column_list=["operation", "_commit_timestamp", "_position"],
    stored_as_scd_type=1
)
7. Kafka CDC Patterns
7.1 Generic Kafka CDC Consumer
import dlt
from pyspark.sql import functions as F

def create_kafka_cdc_pipeline(topic, table_name, schema, key_columns):
    """
    Factory function to create Kafka CDC pipelines.

    Parameters:
    - topic: Kafka topic name
    - table_name: Target table name
    - schema: Spark schema for message parsing
    - key_columns: List of primary key columns
    """

    @dlt.table(name=f"bronze_{table_name}_raw")
    def bronze_raw():
        return (
            spark.readStream
            .format("kafka")
            .option("kafka.bootstrap.servers", kafka_servers)
            .option("subscribe", topic)
            .option("startingOffsets", "earliest")
            .option("maxOffsetsPerTrigger", "100000")
            .load()
        )

    @dlt.table(name=f"bronze_{table_name}_cdc")
    def bronze_cdc():
        return (
            dlt.read_stream(f"bronze_{table_name}_raw")
            .select(
                F.from_json(F.col("value").cast("string"), schema).alias("data"),
                F.col("timestamp").alias("kafka_timestamp")
            )
            .select(
                F.col("data.*"),
                F.col("kafka_timestamp")
            )
        )

    dlt.create_streaming_table(name=f"silver_{table_name}")

    dlt.apply_changes(
        target=f"silver_{table_name}",
        source=f"bronze_{table_name}_cdc",
        keys=key_columns,
        sequence_by=F.col("_commit_timestamp"),
        apply_as_deletes=F.expr("operation = 'DELETE'"),
        stored_as_scd_type=1
    )


# Usage
create_kafka_cdc_pipeline(
    topic="cdc.inventory.customers",
    table_name="customers",
    schema=CUSTOMER_CDC_SCHEMA,
    key_columns=["customer_id"]
)
7.2 Multi-Topic CDC with Schema Registry
@dlt.table(name="bronze_multi_cdc")
def bronze_multi_cdc():
    """
    Consume multiple CDC topics with Confluent Schema Registry.
    """
    from confluent_kafka.schema_registry import SchemaRegistryClient

    schema_registry = SchemaRegistryClient({"url": SCHEMA_REGISTRY_URL})

    return (
        spark.readStream
        .format("kafka")
        .option("kafka.bootstrap.servers", kafka_servers)
        .option("subscribePattern", "cdc\\.inventory\\..*")  # Regex pattern
        .option("startingOffsets", "earliest")
        .load()
        .select(
            F.col("topic"),
            F.col("key").cast("string").alias("message_key"),
            # Schema Registry integration for Avro
            F.from_avro(
                F.col("value"),
                SCHEMA_REGISTRY_URL,
                options={"mode": "PERMISSIVE"}
            ).alias("payload"),
            F.col("timestamp").alias("kafka_timestamp")
        )
    )


# Route to table-specific processing
@dlt.table(name="bronze_customers_cdc")
def bronze_customers_cdc():
    return (
        dlt.read_stream("bronze_multi_cdc")
        .filter(F.col("topic") == "cdc.inventory.customers")
        .select("payload.*", "kafka_timestamp")
    )


@dlt.table(name="bronze_orders_cdc")
def bronze_orders_cdc():
    return (
        dlt.read_stream("bronze_multi_cdc")
        .filter(F.col("topic") == "cdc.inventory.orders")
        .select("payload.*", "kafka_timestamp")
    )
8. SCD Implementation
8.1 SCD Type 1 (Overwrite)
SCD Type 1 maintains only the current state, overwriting previous values:
dlt.create_streaming_table(
    name="dim_customer_scd1",
    comment="Customer dimension - SCD Type 1 (current state only)"
)

dlt.apply_changes(
    target="dim_customer_scd1",
    source="bronze_customers_cdc",
    keys=["customer_id"],
    sequence_by=F.col("_commit_timestamp"),
    apply_as_deletes=F.expr("operation = 'DELETE'"),
    stored_as_scd_type=1  # Overwrite - no history
)
Result Schema:
	customer_id
	name
	email
	status

	1
	John Smith
	john@new.com
	ACTIVE



8.2 SCD Type 2 (History)
SCD Type 2 maintains complete history of changes:
dlt.create_streaming_table(
    name="dim_customer_scd2",
    comment="Customer dimension - SCD Type 2 (full history)"
)

dlt.apply_changes(
    target="dim_customer_scd2",
    source="bronze_customers_cdc",
    keys=["customer_id"],
    sequence_by=F.col("_commit_timestamp"),
    apply_as_deletes=F.expr("operation = 'DELETE'"),
    stored_as_scd_type=2,
    track_history_column_list=["name", "email", "address", "status"]
)
Result Schema:
	customer_id
	name
	email
	__START_AT
	__END_AT

	1
	John Doe
	john@old.com
	2025-01-01
	2025-01-15

	1
	John Smith
	john@new.com
	2025-01-15
	NULL



8.3 Querying SCD Type 2
-- Get current records
SELECT * FROM dim_customer_scd2
WHERE __END_AT IS NULL;

-- Get records as of a specific date
SELECT * FROM dim_customer_scd2
WHERE __START_AT <= '2025-01-10'
  AND (__END_AT IS NULL OR __END_AT > '2025-01-10');

-- Get complete history for a customer
SELECT * FROM dim_customer_scd2
WHERE customer_id = 123
ORDER BY __START_AT;
8.4 Selective History Tracking
Track history only for business-relevant columns:
dlt.apply_changes(
    target="dim_customer_selective",
    source="bronze_customers_cdc",
    keys=["customer_id"],
    sequence_by=F.col("_commit_timestamp"),
    stored_as_scd_type=2,
    # Only create new version when these columns change
    track_history_column_list=[
        "customer_segment",   # Business classification
        "credit_limit",       # Financial attribute
        "account_status"      # Account state
    ]
    # Changes to name, email, phone won't create new versions
)
9. CDC Monitoring
9.1 Replication Lag Monitoring
-- Calculate replication lag
SELECT
    table_name,
    MAX(_commit_timestamp) as latest_source_timestamp,
    MAX(_ingestion_timestamp) as latest_ingested_timestamp,
    current_timestamp() as current_time,
    TIMESTAMPDIFF(
        SECOND,
        MAX(_commit_timestamp),
        current_timestamp()
    ) as lag_seconds
FROM bronze_customers_cdc
GROUP BY table_name;


-- Alert on high lag
SELECT *
FROM (
    SELECT
        table_name,
        TIMESTAMPDIFF(SECOND, MAX(_commit_timestamp), current_timestamp()) as lag_seconds
    FROM bronze_customers_cdc
    GROUP BY table_name
)
WHERE lag_seconds > 300;  -- Alert if lag > 5 minutes
9.2 CDC Throughput Monitoring
-- Events per minute by operation type
SELECT
    date_trunc('minute', _ingestion_timestamp) as minute,
    operation,
    COUNT(*) as event_count
FROM bronze_customers_cdc
WHERE _ingestion_timestamp >= current_timestamp() - INTERVAL 1 HOUR
GROUP BY 1, 2
ORDER BY 1 DESC;


-- Throughput trend
SELECT
    date_trunc('hour', _ingestion_timestamp) as hour,
    COUNT(*) as total_events,
    COUNT(DISTINCT customer_id) as unique_entities,
    SUM(CASE WHEN operation = 'INSERT' THEN 1 ELSE 0 END) as inserts,
    SUM(CASE WHEN operation = 'UPDATE' THEN 1 ELSE 0 END) as updates,
    SUM(CASE WHEN operation = 'DELETE' THEN 1 ELSE 0 END) as deletes
FROM bronze_customers_cdc
WHERE _ingestion_timestamp >= current_timestamp() - INTERVAL 24 HOURS
GROUP BY 1
ORDER BY 1 DESC;
9.3 Data Consistency Checks
@dlt.table(name="cdc_consistency_check")
def cdc_consistency_check():
    """
    Verify CDC data consistency between source and target.

    Checks:
    1. Row counts match (approximate)
    2. Key columns are unique
    3. No orphaned records
    """
    source_count = spark.table("LIVE.bronze_customers_cdc").select(
        F.countDistinct("customer_id").alias("source_unique_keys")
    )

    target_count = spark.table("LIVE.silver_customers").select(
        F.count("*").alias("target_rows"),
        F.countDistinct("customer_id").alias("target_unique_keys")
    )

    return source_count.crossJoin(target_count).select(
        "*",
        F.current_timestamp().alias("check_timestamp"),
        (F.col("source_unique_keys") == F.col("target_unique_keys")).alias("counts_match")
    )
10. Error Handling
10.1 Handling Malformed Events
@dlt.table(name="bronze_cdc_parsed")
@dlt.expect_or_drop("valid_json", "_parse_error IS NULL")
def bronze_cdc_parsed():
    """
    Parse CDC events with error handling.

    Malformed events are dropped and tracked separately.
    """
    return (
        dlt.read_stream("bronze_cdc_raw")
        .withColumn("parsed",
            F.from_json(F.col("value").cast("string"), CDC_SCHEMA)
        )
        .withColumn("_parse_error",
            F.when(F.col("parsed").isNull(), F.col("value"))
        )
    )


@dlt.table(name="cdc_parse_errors")
def cdc_parse_errors():
    """
    Capture malformed CDC events for investigation.
    """
    return (
        dlt.read_stream("bronze_cdc_raw")
        .withColumn("parsed",
            F.from_json(F.col("value").cast("string"), CDC_SCHEMA)
        )
        .filter(F.col("parsed").isNull())
        .select(
            F.col("value").alias("raw_event"),
            F.current_timestamp().alias("error_timestamp"),
            F.lit("JSON_PARSE_ERROR").alias("error_type")
        )
    )
10.2 Handling Out-of-Order Events
@dlt.table(name="bronze_cdc_ordered")
def bronze_cdc_ordered():
    """
    Handle out-of-order CDC events.

    For events with the same key and timestamp, use additional
    ordering criteria to ensure deterministic results.
    """
    return (
        dlt.read_stream("bronze_cdc_raw")
        .withColumn("_ordering_key",
            F.struct(
                F.col("_commit_timestamp"),
                F.col("_transaction_id"),
                F.col("_log_position")
            )
        )
    )


# Use composite ordering in apply_changes
dlt.apply_changes(
    target="silver_customers",
    source="bronze_cdc_ordered",
    keys=["customer_id"],
    sequence_by=F.col("_ordering_key"),  # Composite ordering
    ...
)
10.3 Dead Letter Queue Pattern
@dlt.table(name="cdc_dead_letter_queue")
def cdc_dead_letter_queue():
    """
    Dead letter queue for CDC events that cannot be processed.

    Events end up here when:
    - Parse failures
    - Validation failures
    - Processing errors
    """
    # Combine all error sources
    parse_errors = spark.table("LIVE.cdc_parse_errors")
    validation_errors = spark.table("LIVE.cdc_validation_errors")

    return parse_errors.unionByName(validation_errors, allowMissingColumns=True)
11. Performance Optimization
11.1 Batch Size Tuning
# Optimize Kafka batch sizes
@dlt.table(name="bronze_cdc_optimized")
def bronze_cdc_optimized():
    return (
        spark.readStream
        .format("kafka")
        .option("kafka.bootstrap.servers", kafka_servers)
        .option("subscribe", "cdc-topic")
        # Batch size tuning
        .option("maxOffsetsPerTrigger", "500000")  # Max events per batch
        .option("minPartitions", "10")              # Parallelism
        .option("fetchOffset.numRetries", "3")
        .option("fetchOffset.retryIntervalMs", "1000")
        .load()
    )
11.2 Partitioning for CDC Tables
@dlt.table(
    name="silver_events_partitioned",
    partition_cols=["event_date"]
)
def silver_events_partitioned():
    """
    Partition CDC target table for better query performance.
    """
    return (
        dlt.read_stream("bronze_events_cdc")
        .withColumn("event_date", F.to_date("event_timestamp"))
    )
11.3 Optimize APPLY CHANGES
# Configure cluster for CDC workloads
cluster_config = {
    "spark_conf": {
        # Optimize for streaming
        "spark.sql.streaming.stateStore.providerClass":
            "com.databricks.sql.streaming.state.RocksDBStateStoreProvider",

        # CDC-specific optimizations
        "spark.databricks.delta.merge.optimizeWrite.enabled": "true",
        "spark.databricks.delta.autoCompact.enabled": "true",

        # Memory for state management
        "spark.sql.streaming.stateStore.rocksdb.compactOnCommit": "true"
    }
}
12. Best Practices
12.1 CDC Design Best Practices
	Practice
	Description

	**Use transaction timestamps**
	Order by source transaction time, not arrival time

	**Preserve raw events**
	Keep Bronze layer for debugging and reprocessing

	**Handle deletes explicitly**
	Define clear delete handling strategy

	**Monitor lag**
	Alert when replication lag exceeds SLA

	**Test with production data**
	Use representative data volumes for testing



12.2 Schema Evolution Best Practices
	Practice
	Description

	**Use schema registry**
	Centralize schema management

	**Version your schemas**
	Track schema changes over time

	**Handle backwards compatibility**
	New fields should be optional

	**Test schema changes**
	Validate before production deployment



12.3 Operational Best Practices
	Practice
	Description

	**Set up dead letter queues**
	Capture failed events for analysis

	**Implement idempotency**
	Handle duplicate events gracefully

	**Monitor consistency**
	Regular reconciliation checks

	**Plan for recovery**
	Document reprocessing procedures

	**Secure CDC streams**
	Encrypt data in transit and at rest
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